
AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

WEDNESDAY, 14 NOVEMBER 2018, 09:15-10:15

NEIL KATZ, FRANCIS SEBASTIAN
SKIDMORE, OWINGS & MERRILL

PROGRAMMING INTELLIGENT WAYFINDING AND
EGRESS PLANNING / AS227086

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

Programming Intelligent Wayfinding and Egress Planning

This class demonstrates collaborative workflows for using intelligent model data to perform wayfinding analysis
and egress compliance checks. The first part of this two-part demonstration walks through a popular ‘Shortest
Walk’ algorithm to evaluate egress conditions of a single floor plate using the Grasshopper Visual Programming
interface. The second part demonstrates the process of transferring room and door data from Autodesk Revit to
Grasshopper via the internet and back again.

Neil Katz; Skidmore, Owings & Merrill LLP; Architect
Francis Sebastian; Skidmore, Owings & Merrill LLP; BIM Specialist

Duration: 60 minutes
Type: Instructional Demo
Topics: Architecture Services Building Information Modeling (BIM)
Class Focus: Exploring industry practice and workflows
Learning Objectives:
. Experiment with the potential of using a spatial element data from a Revit project as a planning tool
. Learn how to develop prototypical workflows based on the data set provided in this class to use room and door Revit elements for code
compliance checking
. Learn how to capitalize on existing Grasshopper libraries to perform spatial analysis
. Learn how to use a limited set of Revit API and Dynamo methods to retrieve and inject data to and from the Revit model
Level of Expertise: Intermediate
Audience: Architect, Interior Designer

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

Francis Sebastian, Skidmore, Owings & Merrill
BIM Specialist

Develops BIM workflows for project teams. Builds software applications to bridge gaps in existing technologies.
Enjoys working with Neil.

Neil Katz, Skidmore, Owings & Merrill
Computational Design Specialist | Associate Director

Using a "computational design"​ approach to design, implements and develops methodologies to create geometry
(simple and "complex"​) and to analyze and design in response to many project objectives, including environmental
and sustainability goals.

"Computational design", aspects of which include algorithmic and parametric design as well as BIM, is as much a
way of thinking about design as using and developing tools for design.

WHO WE ARE

Skidmore, Owings & Merrill
Skidmore, Owings & Merrill LLP (SOM) is one of the largest and most influential architecture, interior design,
engineering, and urban planning firms in the world. Founded in 1936, we have completed more than 10,000 projects
in over 50 countries. We are renowned for our iconic buildings and our commitment to design excellence, innovation,
and sustainability.
Our New York office has an applied research and development group focusing on digital design, in five areas:
computational design (geometry, scripting), high performance design (sustainability, analysis), building information
modeling (tools, templates, workflows), visualization (tools, templates, workflows), and realization (fabrication,
materials). We collaborate closely with similar groups in other offices.

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

the ‘right’ tool for the job is one that the designer is
most fluid with

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

WHY ARE WE DOING THIS?

PROJECT
DATA

MULTIPLE DATA FORMATS

COMPLEXITY

TRAINING

Obstacles to ‘fluidity’

ACCESS

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

Programming Intelligent Wayfinding and Egress Planning

INTEROPERABILITY
. accessing the data in Revit:
 . rooms
 . doors
 . “obstacles” (furniture, columns, etc.)
. saving the data in an accessible format and location (JSON file)

ANALYSIS
. pulling the data into Grasshopper
 . parsing the JSON file to identify rooms, doors, and obstacles
. associate doors and obstacles with rooms
. identify corridors and exit doors
. find “shortest paths”

INTEROPERABILITY (again)
. using a JSON file, make the shortest path diagram available to the Revit model

INTEROPERABILITY

GEOMETRIC SPATIAL ANALYSIS

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

Dijkstra’s “shortest path” algorithm:
Dijkstra's algorithm is an algorithm for finding the shortest paths between nodes in a graph,
which may represent, for example, road networks. It was conceived by computer scientist
Edsger W. Dijkstra in 1956 and published three years later.[1][2][3]

The algorithm exists in many variants; Dijkstra's original variant found the shortest path
between two nodes,[3] but a more common variant fixes a single node as the "source" node
and finds shortest paths from the source to all other nodes in the graph, producing a
shortest-path tree.

For a given source node in the graph, the algorithm finds the shortest path between that node
and every other.[4]:196–206 It can also be used for finding the shortest paths from a single node
to a single destination node by stopping the algorithm once the shortest path to the
destination node has been determined. For example, if the nodes of the graph represent cities
and edge path costs represent driving distances between pairs of cities connected by a direct
road, Dijkstra's algorithm can be used to find the shortest route between one city and all other
cities. As a result, the shortest path algorithm is widely used in network routing protocols,
most notably IS-IS (Intermediate System to Intermediate System) and Open Shortest Path
First (OSPF). It is also employed as a subroutine in other algorithms such as Johnson's.

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Dijkstra's algorithm to find the shortest path between a and b. It
picks the unvisited vertex with the lowest distance, calculates the
distance through it to each unvisited neighbor, and updates the
neighbor's distance if smaller. Mark visited (set to red) when done
with neighbors.

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Vertex_(graph_theory)
https://en.wikipedia.org/wiki/Graph_(abstract_data_type)
https://en.wikipedia.org/wiki/Computer_scientist
https://en.wikipedia.org/wiki/Edsger_W._Dijkstra
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#cite_note-1
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#cite_note-Dijkstra_Interview-2
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#cite_note-Dijkstra1959-3
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#cite_note-Dijkstra1959-3
https://en.wikipedia.org/wiki/Shortest-path_tree
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm#cite_note-mehlhorn-4
https://en.wikipedia.org/wiki/Routing_protocol
https://en.wikipedia.org/wiki/IS-IS
https://en.wikipedia.org/wiki/OSPF
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Johnson%27s_algorithm

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

Grasshopper has a “Shortest Path” component,
which uses Dijkstra’s algorithm.

If we input a collection of lines (“Curves”) from
with the Shortest Path tool will select, and a line
indicated the desired path, from start point to
end point (“Wanted path”), the component will
compute the shortest path.

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

 1 function Dijkstra(Graph, source):

 2

 3 create vertex set Q

 4

 5 for each vertex v in Graph: // Initialization

 6 dist[v] ← INFINITY // Unknown distance from source to v

 7 prev[v] ← UNDEFINED // Previous node in optimal path from source

 8 add v to Q // All nodes initially in Q (unvisited nodes)

 9

10 dist[source] ← 0 // Distance from source to source

11

12 while Q is not empty:

13 u ← vertex in Q with min dist[u] // Node with the least distance

14 // will be selected first

15 remove u from Q

16

17 for each neighbor v of u: // where v is still in Q.

18 alt ← dist[u] + length(u, v)

19 if alt < dist[v]: // A shorter path to v has been found

20 dist[v] ← alt

21 prev[v] ← u

22

23 return dist[], prev[]

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

A demo of Dijkstra's algorithm based on Euclidean distance.
Red lines are the shortest path covering, i.e., connecting u and
prev[u]. Blue lines indicate where relaxing happens, i.e.,
connecting v with a node u in Q, which gives a shorter path from
the source to v.

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

steps (based on Rhino-created geometry; geometry
acquired from Revit is slightly different):

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

steps (based on Rhino-created geometry; geometry
acquired from Revit is slightly different):

1. From a list of rooms to process, identify the
room bounding polylines which contain those
roomnames.

2. Offset each room outline outward. Find the
door-points which are included inside each of
these offset polylines. (The door-points will
typically be slightly outside of the room
polyline.)

3. Find any “obstacles” (furniture, columns, etc.)
contained within the room polyline.

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

steps (based on Rhino-created geometry; geometry
acquired from Revit is slightly different):

1. From a list of rooms to process, identify the
room bounding polylines which contain those
roomnames.

2. Offset each room outline outward. Find the
door-points which are included inside each of
these offset polylines. (The door-points will
typically be slightly outside of the room
polyline.)

3. Find any “obstacles” (furniture, columns, etc.)
contained within the room polyline.

4. To start the shortest-path algorithm, create
lines from each room vertex to the door point
(these identify the initial “start” and “end”
points for the algorithm).

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

steps (based on Rhino-created geometry; geometry
acquired from Revit is slightly different):

1. From a list of rooms to process, identify the
room bounding polylines which contain those
roomnames.

2. Offset each room outline outward. Find the
door-points which are included inside each of
these offset polylines. (The door-points will
typically be slightly outside of the room
polyline.)

3. Find any “obstacles” (furniture, columns, etc.)
contained within the room polyline.

4. To start the shortest-path algorithm, create
lines from each room vertex to the door point
(these identify the initial “start” and “end”
points for the algorithm).

5. Create lines from each vertex to every other
vertex, including obstacle vertices and door
points.

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

steps (based on Rhino-created geometry; geometry
acquired from Revit is slightly different):

1. From a list of rooms to process, identify the
room bounding polylines which contain those
roomnames.

2. Offset each room outline outward. Find the
door-points which are included inside each of
these offset polylines. (The door-points will
typically be slightly outside of the room
polyline.)

3. Find any “obstacles” (furniture, columns, etc.)
contained within the room polyline.

4. To start the shortest-path algorithm, create
lines from each room vertex to the door point
(these identify the initial “start” and “end”
points for the algorithm).

5. Create lines from each vertex to every other
vertex, including obstacle vertices and door
points.

6. Cull lines which pass through obstacles or
outside of the room polyline.

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

steps (based on Rhino-created geometry; geometry
acquired from Revit is slightly different):

1. From a list of rooms to process, identify the
room bounding polylines which contain those
roomnames.

2. Offset each room outline outward. Find the
door-points which are included inside each of
these offset polylines. (The door-points will
typically be slightly outside of the room
polyline.)

3. Find any “obstacles” (furniture, columns, etc.)
contained within the room polyline.

4. To start the shortest-path algorithm, create
lines from each room vertex to the door point
(these identify the initial “start” and “end”
points for the algorithm).

5. Create lines from each vertex to every other
vertex, including obstacle vertices and door
points.

6. Cull lines which pass through obstacles or
outside of the room polyline.

7. Use the shortest-path algorithm to find the
shortest distance from each room vertex to the
door.

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

steps (based on Rhino-created geometry; geometry
acquired from Revit is slightly different):

1. From a list of rooms to process, identify the
room bounding polylines which contain those
roomnames.

2. Offset each room outline outward. Find the
door-points which are included inside each of
these offset polylines. (The door-points will
typically be slightly outside of the room
polyline.)

3. Find any “obstacles” (furniture, columns, etc.)
contained within the room polyline.

4. To start the shortest-path algorithm, create
lines from each room vertex to the door point
(these identify the initial “start” and “end”
points for the algorithm).

5. Create lines from each vertex to every other
vertex, including obstacle vertices and door
points.

6. Cull lines which pass through obstacles or
outside of the room polyline.

7. Use the shortest-path algorithm to find the
shortest distance from each room vertex to the
door.

8. Find the LONGEST of these shortest paths
(this identifies the location in the room which is
farthest from the door).

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

steps (based on Rhino-created geometry; geometry
acquired from Revit is slightly different):

1. From a list of rooms to process, identify the
room bounding polylines which contain those
roomnames.

2. Offset each room outline outward. Find the
door-points which are included inside each of
these offset polylines. (The door-points will
typically be slightly outside of the room
polyline.)

3. Find any “obstacles” (furniture, columns, etc.)
contained within the room polyline.

4. To start the shortest-path algorithm, create
lines from each room vertex to the door point
(these identify the initial “start” and “end”
points for the algorithm).

5. Create lines from each vertex to every other
vertex, including obstacle vertices and door
points.

6. Cull lines which pass through obstacles or
outside of the room polyline.

7. Use the shortest-path algorithm to find the
shortest distance from each room vertex to the
door.

8. Find the LONGEST of these shortest paths
(this identifies the location in the room which is
farthest from the door).

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

layers:

WALLS
DOORS
door-points
exitdoor-points
FURNITURE
ROOM-NUMBERS

There are two main components to the script:
one to analyze regular rooms, and one for
“corridors” which lead to an exit.

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

layers:

WALLS
DOORS
door-points
exitdoor-points
FURNITURE
ROOM-NUMBERS

There are two main components to the script:
one to analyze regular rooms, and one for
“corridors” which lead to an exit.

For regular rooms, the script associates doors
with rooms; draws lines between the door and
each room vertex, then uses the shortest-path
algorithm for each line, computing a shortest
path from each vertex. It then finds the longest
shortest path.

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

layers:

WALLS
DOORS
door-points
exitdoor-points
FURNITURE
ROOM-NUMBERS

There are two main components to the script:
one to analyze regular rooms, and one for
“corridors” which lead to an exit.

For regular rooms, the script associates doors
with rooms; draws lines between the door and
each room vertex, then uses the shortest-path
algorithm for each line, computing a shortest
path from each vertex. It then finds the longest
shortest path.

For corridors, it finds the shortest path from
each “room door” to each “exit door”.
“Obstacles” are found by containment in each
room.

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

“cluster” with ShortestPath algorithm

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

FORMATTING DATA FOR INTEROPERABILITY

...JavaScript Object Notation or JSON … is an open-standard

file format that uses human-readable text to transmit data

objects consisting of attribute–value pairs and array data

types …*

*https://en.wikipedia.org/wiki/JSON

https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Human-readable_medium
https://en.wikipedia.org/wiki/Attribute%E2%80%93value_pair
https://en.wikipedia.org/wiki/Array_data_type
https://en.wikipedia.org/wiki/Array_data_type

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

FORMATTING DATA FOR INTEROPERABILITY

{
"category":"Rooms",

"uid":"5b52def26b744e35a0484e5e3b6c18f40004f2c4",

"name":"Room 1",

"mark":"1",

"projectId":"1Vnj5QDPP2_gMJiD2jYtrG",

"levelName":"Level 1",

"location":{"Z":0,"Y":15.881751771605,"X":12.673566058023},

"svgPaths":["M0.666666666666667,0.666666666666667

 26.3333333333333,0.666666666666667 6.3333333333334,

36 0.666666666666668,36

0.666666666666667,0.666666666666664Z"

],
"properties":null

}

REVIT
API /
DYNAMO

KEY-VALUE PAIR

ARRAY

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

THE ROUNDTRIP

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

THE DEMO

flux2o.ml

we decided to be a bit cheeky...

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

WWW

DATA
STOREC#

Revit API

Python/
WebSockets

Javascript/
Raphael.js
HTML/CSS

Python/
WebSockets

php
MySQL

TECHNOLOGY DEEP-DIVE

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

Autodesk Revit ===> WWW

REVIT API INTERFACE
IExternal Command
IUpdater

WEB INTERFACE
HttpClient
Async Await

JSON

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

WWW ===> Database

SERVER OPERATING
SYSTEM

WEB SERVER
PLATFORM

SERVER-SIDE SCRIPTING
LANGUAGE

DATABASE PLATFORM

SQL

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

uid fileName

uid category levelName rawjson

uid pointjson

All Projects Index

Revit Data

Grasshopper Data

A DATABASE IS A COLLECTION
OF TABLES

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

SQL Python/Websocket

WWW ===> Grasshopper ===> WWW

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

WWW ===> Dynamo ===> Autodesk Revit

Python/
WebSocket

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

. use the best tool for the application!
 . they’re probably not the same tools
 . one model / many tasks

One of my favorite definitions of “BIM”: a collaborative model, allowing many project participants to access and view the
model in ways most appropriate for them. Someone comfortable with Grasshopper should have no problem to perform (and
automate) egress analysis on a Revit model.

. strategies exist to write data from a Revit model in-the-cloud, on-the-fly, to a common format file (JSON)

. we can read and parse the JSON file to re-create the geometry in another environment

. new data can be pushed to JSON and incorporated into the Revit model

One example was shown today.

I have never completed a script. Every script does what it needs to do at the time it is written, and I always have every
intention to go back and clean it up, and generalize it. That rarely happens. And when it does, that process never completes.

…

CONCLUSIONS

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

FUTURE DEVELOPMENT

Open-Source Project under MIT License:

https://github.com/parametrix/flux2o

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

Our sincere thanks to our colleagues at SOM who helped solve critical challenges along the way
TIMOTHY TAI
MAX HANEY

Online personalities who were a ready reference for most technical challenges
JEREMY TAMMIK, The Building Coder BLOG

Libraries we drew heavily from:
JSON.Net, by James Newton King
Shortest Walk, by giulio@mcneel.com
Socket API, various sources

THANK YOU!

mailto:giulio@mcneel.com

AU 2018; NEIL KATZ, FRANCIS SEBASTIAN

SKIDMORE, OWINGS & MERRILL LLP

QUESTIONS, COMMENTS, THOUGHTS...

Autodesk and the Autodesk logo are registered trademarks or trademarks of Autodesk, Inc., and/or its subsidiaries and/or affiliates in the USA and/or other countries. All other brand names, product names, or
trademarks belong to their respective holders. Autodesk reserves the right to alter product and services offerings, and specifications and pricing at any time without notice, and is not responsible for
typographical or graphical errors that may appear in this document.
© 2018 Autodesk. All rights reserved.

http://www.autodesk.com/creativecommons

